National Exams December 2019

04-BS-1, Mathematics

3 hours Duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
- 2. A Casio or Sharp approved calculator is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme:

- 1. 20 marks
- 2. 20 marks
- 3. 20 marks
- 4. 20 marks
- 5. 20 marks
- 6. 20 marks
- 7. 20 marks
- 8. 20 marks

1. Solve the following initial value problem

$$y'' - 12y' + 45y = 18\cos(3t), \quad y(0) = 0, \quad y'(0) = 0.$$

Note that, 'denotes differentiation with respect to t.

2. Find the general solution, y(x), of the differential equation

$$y' + 2xy = e^{-x^2}\sec(2x)$$

Note that ' denotes differentiation with respect to x.

- 3. Find the minimum value of the function $F(x,y,z)=2x^2+y^2+3z^2$ subject to the constraint x + y - z + 1 = 0
- 4. Find the general solution to the following system of differential equations.

$$\frac{dx}{dt} = 4x + 2y$$

$$\frac{dx}{dt} = 4x + 2y,$$

$$\frac{dy}{dt} = 3x - y + e^{-2t}.$$

- 5. Let $f(x,y) = 1 + x \ln(xy 5)$. Find a formula for the plane tangent to the surface z = f(x,y) at the point (2,3) and use the tangent plane to approximate f(2.1, 2.95).
- 6. Find the volume of the solid region inside the ellipsoid

$$x^2 + y^2 + 4z^2 = 5$$

and above the cone

$$z = \sqrt{x^2 + y^2}.$$

- 7. Find the work done by the field $\mathbf{F}(x,y,z)=x^2\mathbf{i}+y\mathbf{j}-z\mathbf{k}$ in moving a particle from the point (0,2,0)to the point $(3\pi, 0, 2)$ along the path x = 6t, $y = 2\cos t$, $z = 2\sin t$.
- 8. Find the surface area of that portion of the surface $z=1-\sqrt{x^2+y^2}$ that lies in the first octant.